

How can I replace Bronkhorst flowmeter?

The following document refers to flow meters, manufactured by Bronkhorst, and used to measure gas flow rate. Follow these instructions when you need to replace one of such instruments.

STEP 1: Create a backup copy of the "Config.mdb" file contained – according to the type of software – in:

- C:\R&Dflex2\Cfg folder (for R&D test benches)
- C:\LabSoft\Cfg (for laboratory test benches)
- C:\Users\Public\Documents\Microplan\Parseq\ParseqFolders\Config folder (for EOL test benches).

STEP 2: Switch off the electrical supply of test bench.

STEP 3: (When applicable) Remove the metal protective cover of the Bronkhorst device unscrewing the two screws (circled in red).

STEP 4: Unplug the electrical connector [A] from Bronkhorst device

STEP 5: Hydraulically disconnect the gas flow meter unscrewing the fittings (blue circled). Probably will also you need to loosen the pipe blocking part (circled in green) to be able to disconnect the device.

STEP 6: Replace the gas flow meter with the available spare part, tighten the hydraulic fittings and plug the electrical connector

STEP 7: At this stage you can power on the bench and open the R&Dflex2 – LabSoft - ParSeq software.

STEP 8: Enter in the Diagnostic application and within the Analog Input Values tab, switch to Electric mode.

JUL DGN_SimpleDiagnostic.vi										
Digital Input	Digital Output	Cou	nter input	Analog input Valu	ies Analog	g input Chart	🔏 AI configura	ation Damp. 1		ic 🔻
Digital Input	Digital Output	Cou	nter input	Analog input Valu GFR_GAS01 0,000 GFR_GAS02 0,000 GFR_GAS03 0,000 GFR_GAS04 0,000 GFR_GAS04 0,000 GFR_GAS04 0,000 GFR_GAS04 0,000 GFR_GAS06 0,000 GFR_GAS06 0,000 GFR_GAS08 0,000 GFR_GAS08 0,000 GFR_GAS09 0,000	Jes Analog MTFR (NI/h) 0,000	g input Chart GMP3 (mbar) 0,000 AAV (V) 0,000 AAC (A) 0,000 CO (ppm) 0,000 CO2 (%) 0,000 AII5 (mA) 0,000 AII5 (mA) 0,000 AII5 (mA) 0,000 AII5 (mA) 0,000	Al configura CHRT (degC) 0,000 DWIT (degC) 0,000 DWOT (degC) 0,000 BLFT (degC) 0,000 BLFT (degC) 0,000 BLFT (degC) 0,000 PT6 (degC) 0,000 PT7 (degC) 0,000 GFR (smc/h) -1,850 CHDT (K) 0,107	ation Damp. 1 DWDT (K) -0,345 2 QC (KW) -17,494 2 CHUP (KW) -0,137 3 BLUP (KW) -0,220 3 DWUP (KW) 0,150 4 AAW (kW) 0,000 3	Electri Re V Ele	ic V al
				GFR_GAS10 (0,000)	5,000 5MP2 (mbar) 0,000	CHFT (degC)	0,197 BLDT (K) 0,315			

STEP 9: Check that the value in the GFR_GAS01 (or in GFR_G20 or generally speaking the in the gas flow rate channel related to G20 gas measure) is around 4. This is the electric value output given by the gas flow meter and its range is 4-20mA.

STEP 10: Press the "AI configuration" button to enter in the "Editor for Calibration Point" application.

STEP 11: Replace the existing calibration points of the GFR_GAS01 or of the gas flow related channel (circled in orange) with the new ones contained in the calibration certificate (read below)

In the following calibration certificate identify the "Reference instrument" column of values. Insert in the "Signal" column the "Detected value (mA)" (red circled) and insert in the "Reference" column the "Reference (Smc/h)" (blue circled). Please note that there are different templates for calibration certificates and their layout maybe different, just pay attention to follow the logic given in the previous sentence.

Reference instrument:										
Model	S/N	Calibrate by	Certificate N.	date						
Elser G4-10	1150	TifernoGas	VT249	11/10/2018						
ELSI	GCT	Microplan	MIC224/2018	24/10/2018						
Siemens DS III	N1-A922-9171194	DeltaOHM	100002-12	17/10/2018						
Notes:	% f.s. 0% 33% 64% 100%	Reference (Smc/h) 0 1,63 3,22 4,99	Detected value (mA) 4,048 8,755 13,489 18,821							
Date: 21/02	2/2019	Microplan S.r.I.								

STEP 12: Press OK button to save the new calibration points and close the diagnostic calibration points editor software.

STEP 13: From this moment the spare gas flow meter is configured, but the execution of a leakage test is advised before extensive usage. To do this you have to:

• close the gas outlet pipe using a cap or connecting a boiler

- open the gas inlet pneumatic valve (usually VP0.1 or VP0.2) and the gas outlet pneumatic valve (could be VP0.3, if present)
- after some seconds (5-10 sec), close the gas inlet pneumatic valves (VP0.1 and VP0.2)
- wait some seconds to allow a stabilization of the pressure measured by the GSP pressure instrument (if present on the test bench, otherwise refer to the manometer gauge installed on the gas circuit)
- check that the maximum pressure drop after in 5 minutes is less than 0,5% of the initial pressure

STEP 14: Finally test the correct operations of the test bench (for instance, launch an automatic test) in order to verify that, with the current gas flow meter, the measured gas flow rate is the expected one.